文章编号: 0258-7025(2008)07-0997-04

用于大气吸收测量的小型电激励连续波 DF/HF 选线化学激光器

王红岩1 袁圣付1 李 强1 李文煜1 华卫红1 陈金宝1 胡 明2 徐吉胜2 范承玉2

(国防科学技术大学光电科学与工程学院,湖南 长沙 410073 (中国科学院安徽光学精密机械研究所大气光学研究中心,安徽 合肥 230031)

摘要 介绍了用于大气吸收测量的电激励双模块小型连续波 DF/HF 选线化学激光器,描述了其结构、运转方式和 激光器的性能。在采用一级振荡、一级输出的利特罗(Littrow)自准直光栅色散腔结构的前提下,激光器目前共获 得 17 支 DF 激光谱线,11 支 HF 激光谱线,大部分单谱线基横模输出超过1 W,单次连续出光时间超过30 min,功 率稳定性在±5%以内。将激光器激光光栅改装为球面腔镜后也可输出多谱线 DF/HF 激光,功率水平为20 W,选 模后基横模输出 6~8 W。

关键词 激光器;大气吸收;电激励;连续波;化学激光;单谱线 中图分类号 TN 248.5 文献标识码 A doi: 10.3788/CJL20083507.0997

A Discharge Driven Continuous Wave Single Line DF/HF Chemical Laser for Atmospheric Absorption Measurement

Wang Hongyan¹ Yuan Shengfu¹ Li Qiang¹ Li Wenyu¹ Hua Weihong¹ Chen Jinbao¹ Hu Ming² Xu Jisheng² Fan Chengyu² ¹College of Opto-Electric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China ²Atmospheric Optics Research Laboratory, Anhui Institute of Optics and Fine Machanics,

Chinese Academy of Sciences, Hefei, Anhui 230031, China

Abstract A discharge driven two-module small scale continuous wave (CW) DF/HF single line chemical laser applied to atmospheric absorption measurement was built. The structure, running manner, and the performance of the laser were described in detail. With the first order oscillating, first order output Littrow grating dispersion laser cavity, 17 DF lines and 11 HF lines are selected. Most of the single lines' fundamental mode output exceeds 1 W and stabilizes in 5% scale through the 30 min running time. By altering grating to spherical cavity mirror, 20 W multi-line DF lasing and multi-line HF lasing could be realized with this device, and with an aperture inside the laser cavity to discriminate the higher order transverse modes, $6 \sim 8$ W multi-line fundamental mode lasing could be obtained.

Key words lasers; atmospheric absorption; discharge-driven; continuous wave; chemical laser; single line

1 弓[言

在研究 DF/HF 激光的大气传输,特别是大气 对 DF/HF 激光的吸收效应时,找到一种成本低、功 率水平适中、能长时间出光的单谱线激光光源成为 关键。氧碘化学激光器相关的研究中,目前已多采 用可调谐半导体激光器^[1],但处于 DF/HF 波段的 全固态激光器尚不成熟。而典型的燃烧驱动 DF/ HF 化学激光器大都属于高功率器件,使用成本高, 单次出光时间一般仅到10 s量级,并不利于这类实 验工作的开展。相比之下,气体放电激励的连续波

基金项目:国家自然科学基金(10304025)资助项目。

收稿日期:2007-05-22: 收到修改稿日期:2008-01-28

作者简介:王红岩(1979—),男,讲师,主要从事电激励化学激光器方面的研究。E-mail:whynudtch@tom.com

DF/HF 化学激光器能满足这些要求,能长时间稳 定出光更是一大优势。近年来,电激励化学激光器 在如泛频 HF 化学激光器,全气相碘化学激光器, ElectriCOIL 等化学激光的前沿研究中发挥了重要 作用^[2~5]。

本实验室相继在同一台电激励化学激光器上实现了 HF 激光,DF 激光,HCl 激光,CO2 激光,并获得了单谱线 HF,DF 激光激射。在此基础上,研制了一台电激励连续波 DF/HF 选线化学激光器,专用于 DF/HF 激光的大气吸收测量。

2 激光器结构

激光器的核心组件安装在高度可调的升降平台 上,如图1所示,基本结构与文献[6~8]类似。整个 核心组件由放电管、主体、光腔和热交换管四部分组 成,采用双放电管驱动,并将双主体并联,形成 20 cm的增益宽度,以提高单程增益。除核心组件 外,整个激光器系统还包括高压直流电源系统、气源 及流量控制系统、水冷系统以及废气排放系统。

图 1 电激励 DF/HF 选线激光器核心组件示意图 Fig. 1 Schematic diagram of primary part of dischargedriven DF/HF single line laser

以 DF 激光为例,激光器的工作方式为: SF₆, He,O₂ 的混合气进入放电管后,部分 SF₆ 经高压直 流放电被离解以产生自由 F 原子; He 用作稀释剂, 同时起降低起辉电压的作用;加入的 O₂ 用以反应 掉 SF₆ 离解过程中产生的固态 S 单质,并通过置换 反应 SF_i + O₂ \rightarrow SF_{i=2}O₂ + 2F(*i* = 2,...,6) 来增加 F 原子的产率^[7]。含有 F 原子的热气流在通过放电 管的环形阴极进入主体后,与从上下两列交错排布 的微孔注入的 D₂ 气发生剧烈的抽运反应,生成激 发态的 DF 分子。整个增益区宽200 mm,高3 mm, 顺流方向的增益长度与真空系统抽速有关,典型的 为几个毫米。

光腔采用外腔式,并由布儒斯特窗对主体的低 压反应气流进行密封。气瓶来的 He 气分出一路作 为气幕 He,用以吹离滞留在突出的布儒斯特窗区域 的基态 DF 分子。单支振转谱线的选择由利特罗 (Littrow)自准直结构的光栅色散腔完成,腔长约 70 cm。对于波长为λ;的振转谱线,仅当光栅旋转到 使入射角满足光栅方程 $2d\sin\theta_i = \lambda_i$ 时才能实现激 射。通过旋转光栅改变 θ, 就可以依次选出各支振 转谱线。光栅光谱仪用以监测各支谱线的波长。激 光在热敏纸上烧蚀的图样用以指示激光模式。所用 光栅全由美国 Richardson 光栅实验室刻制。DF 波 段光栅刻槽数为240 g/mm,闪耀角26.743°,闪耀波 长3.879 µm;HF 波段光栅刻槽数为420 g/mm,闪 耀角26.45°,闪耀波长2.15 µm,虽然闪耀波长不在 2.7 μm附近,但在2.5~2.9 μm区间拥有比较平坦 的衍射效率曲线。

由于 DF 激光光栅零级耦合输出效率太低,为 了提高功率提取效率,并防止在腔内聚积起过高的 功率密度,从而对光栅刻槽面造成损害,选用如图 2 所示的一级振荡、一级输出^[9]模式。为了加入导引 光,用一块平面镜来偏折输出光束,平面镜经镀膜处 理,对于 45°入射的红外光全反,对可见光则部分透 过,经输出镜后表面反射并经偏折镜反射的调腔光 就自然地起到了导引光的作用。

图 2 一级振荡、一级输出色散腔示意图

Fig. 2 Schematic diagram of grating dispersion cavity configuration for the single line laser

针对色散腔设计了能实现光栅多维正交分离调 节和锁定的手动光栅调节架,光栅的转动由差分螺 杆控制,可确保小于0.1°的光栅转动扫描精度。曾 经研究发现^{10]},对于流向增益长度仅在毫米量级的 亚音速电激励 DF/HF 化学激光器,依然存在各支 谱线的最大增益位置沿流场方向不同的现象。由于 高斯基模的模体积有限,为了使模体积能有效地与 各支谱线的峰值增益位置相匹配,设计了满足垂直、 水平方向平移以及两维倾斜调节的四维调节架,通 过微调光轴相对于 D₂(H₂)喷注孔的位置,来实现 各支谱线功率提取的优化。 通过插入光腔的可变光阑来限制高阶横模的振荡。由于调准状态下的色散腔可等效为一个平凹腔,而在同样的腔长下,平凹腔比凹凹腔的基横模体积大,更有利于获得基横模输出^[11]。而增益区3mm高的通道已起到了限模的作用,因此绝大多数单谱线激光的输出均为基横模。实验发现,光斑模式与光栅的调节有很大的关系,如果光栅色散腔偏离调准状态,会产生模畸变,使光束质量变差。同时又提供了一种粗略的调腔方法,即通过观察光斑模式的改善状况来指导光栅的调节。

水冷系统保证对放电管及主体的冷却。提取功 率以后的废气在进入真空管前经热交换管进一步冷 却,之后废气经洗消塔过滤,剩下的无害气体由真空 设备直排大气。激光器的气流量控制采用浮子流量 计,带远程控制的10 kV,1 A高压直流数显电源用 以提供电功率,整台激光器仅需一人即可完成操作。

3 激光器性能

多次测试证实激光器的优良性能,其典型的气量 和电功率消耗水平如表1所示(原始体积流量值,入 口压力0.3 MPa)。在这样的条件下,大部分谱线的输 出功率达到1W,且多数情况下均不需要用光阑限模 即可获得基横模振荡,对功率输出的监测表明功率稳 定在±5%以内,单次连续运转时间超过30 min。

表 1 电激励 DF/HF 选线化学激光器的典型气流量和电功率注入参数 Table 1 Typical fuel and electric power input data of the single line laser

Flow-rate /(m ³ /h)					Total	Total	Cavity
Screen He	Primary He	O_2	SF_6	H_2 / D_2	voltage /kV	current /mA	pressure /kPa
0.4	0.6	0.25	0.9	0.6	9	930	1.4~1.7

表 2 电激励 DF/HF 选线化学激光器单谱线 输出的典型结果

Table 2 Typical output results of single line laser

Laser type	Line	Wavelength $/\mu m$	Power level
DF laser	P1(5)	3.5811	W
	P1(6)	3.6128	W
	P1(7)	3.6457	М
	P1(8)	3.6798	М
	P2(5)	3.6982	М
	P2(6)	3.7311	S
	P2(7)	3.7652	S
	P2(8)	3.8008	S
	P2(9)	3.8376	S
	P3(6)	3.8548	S
	P2(10)	3.8758	М
	P3(7)	3.8903	М
	P3(8)	3.9275	М
	P3(9)	3.9655	М
	P3(10)	4.0053	W
	P3(11)	4.0465	W
	P3(12)	4.0894	W
HF laser	P1(3)	2.6085	М
	P1(4)	2.6398	М
	P1(5)	2.6728	S
	P1(6)	2.7075	S
	P2(4)	2.7605	S
	P2(5)	2.7953	S
	P2(6)	2.8320	S
	P2(7)	2.8706	S
	P2(8)	2.9112	М
	P2(9)	2.9540	W
	P2(10)	2.9990	W

DF/HF选线激光器的输出结果如表 2 所示。 利用文献[12]中给出的光谱项常数对各支谱线的波 长进行计算,再通过计算结果与光谱仪实测结果的 比对来辨识谱线。表中的 S 表示功率超过1 W的强 谱线,M 表示功率在0.5~1 W之间的中等强度谱 线,W 表示功率低于500 mW的较弱谱线。由于在 HF 单谱线激光的测试过程中发现激光光栅的表面 有被激光灼伤的迹象,因此对于比较容易超过1 W 输出的谱线,将出光功率控制在1 W附近,不再往高 调节。通过调节气流配比、更改注入电参数、微调光 轴都能起到调节输出功率大小的目的。

表 2 中 DF 激光的结果是使用了两种球面输出 镜的结果。对于连续波化学激光器,各支谱线的增 益不同,甚至相差比较大。而按照 Rigrod 功率提取 理论^[13],每支谱线的最佳耦合输出率由腔损耗、耦 合输出率、单程增益共同决定。为了获得尽可能多 的振荡谱线,在激光光栅给定的条件下,必须降低输 出镜的耦合输出率以降低色散腔的振荡阈值。但在 一级振荡、一级输出模式下,光栅的零级衍射作为比 较强的损耗出现,导致了色散腔整体提取效率的下 降,也使得最佳耦合输出率向输出率增大的方向移 动。因此,获得尽可能多的谱线振荡数目和提高单 支谱线的输出功率之间存在矛盾。

优先考虑使 3.8 μm 附近的强谱线获得比较高 的功率输出,为此将腔镜耦合输出率定在 15%;并 选用2 m曲率半径,以增加基横模的模体积。在这 种腔镜条件下,共获得 13 支谱线,其中 P2(6)~P3 (6)的6支谱线均可较容易地获得大于1W的基横 模输出,剩下的大多数谱线通过加大气流量和改善 气流配比也能获得接近1W的基横模输出。

在将耦合输出率减小为9%,并将腔镜曲率半 径减小为1m以减小衍射损耗后,P1(5),P1(6),P3 (11),P3(12)四支比较弱的谱线获得振荡,单谱线 数目增加到17支,但其他本来比较强的谱线功率出 现了下降。随着腔镜耦合输出率的进一步减小,会 有更弱的谱线获得振荡,从而使得谱线的总数目增 加,然而其他谱线的输出功率也将随之下降。

表 2 中 HF 激光采用的是 1 m 曲率半径,15% 耦合输出率的球面腔镜。由于 HF 激光光栅的零级 衍射效率比较高,在目前的耦合输出率下整个色散 腔的损耗比较大,因此减少了可获得激射的谱线数 目。

光栅调节架上的光栅可以方便地更换为球面反 射镜,光栅色散腔就转变成一般的球面稳定腔,在满 足振荡条件之后,即可输出多谱线的 DF 激光。而 将 D₂ 改为 H₂,在采用了相应波段的腔镜之后,就可 输出多谱线的 HF 激光。在全反镜曲率取为2 m, 输出镜曲率取为1 m,腔长约70 cm,HF 波段腔镜耦 合输出率取 15%,DF 波段腔镜耦合输出率取 9%的 条件下,两种激光都获得了接近20 W的功率输出。 通过光阑选模可获得 6~8 W的基横模输出,功率稳 定性在 $\pm 5\%$ 以内。

4 结 论

介绍了一台用于大气吸收测量的小型电激励连续波 DF/HF 选线化学激光器。激光器拥有比较好的光束质量、合适的功率水平、功率波动小、燃料消耗少、可长时间连续运转,并且可方便地实现 DF 多谱线激射和 HF 多谱线激射。

参考文献

1 Gao Xiaoming, Huang Wei, Deng Lunhua et al.. Measurement

of self-broadening and N₂ broadendning coefficients of water vapor molecule near 1.31 μ m [J]. Acta Optica Sinica, 2006, **26**(5):641~646 高晓明,黄 伟,邓伦华 等. 1.31 μ m 附近水汽分子的自加宽系

同妃切,與 市, 邓化华 守. 1.31µm 附近, 八万丁的日加 短示 数、氮气加 宽系数的 测量[J]. 光 学 孝报, 2006, **26**(5):641~ 646

- 2 Gerald C. Manke [], Chris B. Cooper, Shiv C. Dass et al.. A multiwatt all gas-phase iodine laser (AGIL) [J]. IEEE J. Quantum Electron., 2003, 39(8):995~1002
- 3 Liping Duo, Shukai Tang, Haijun Yu *et al.*. DC discharge characteristics and fluorine atom yield in NF₃/He [J]. *Chin. Opt. Lett.*, 2006, 4(3):170~172
- 4 David L. Carroll, Joseph T. Verdeyen, Darren M. King *et al.*. Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O₂(a¹Δ) produced in an electric discharge [J]. Appl. Phys. Lett., 2005, 86(11):11104
- 5 C. F. Wisniewski, K. B. Hewett, G. C. Manke [] et al.. Small signal gain measurement in a small scale HF overtone laser [J]. Appl. Phys. A, 2003, 77(2):337~342
- 6 J. J. Hinchen. Operation of a small single-mode stable cw hydrogen fluoride laser [J]. J. Appl. Phys., 1974, 45(4): 1818~1821
- 7 Donald J. Spencer, James A. Beggs, Harold Mirels. Smallscale cw HF(DF) chemical laser [J]. J. Appl. Phys., 1977, 48(3):1206~1211
- 8 Huang Ruiping, Sun Yizhu. A small scale cw HF chemical laser [J]. Chinese J. Lasers, 1983, 10(4):250~251 黄瑞平,孙以珠. 小型连续波 HF 化学激光器[J]. 中国激光, 1983, 10(4):250~251
- 9 T. M. Hard. Laser wavelength selecting and output coupling by a grating [J]. Appl. Opt., 1970, 9(8):1825~1830
- 10 Wang Hongyan, Yuan Shengfu, Li Qiang *et al.*. Chosing cavity axis for a discharge driven CW line-selected HF/DF chemical laser [J]. *High Power Laser and Particle Beams*, 2006, 18 (8):1257~1260
 王红岩,袁圣付,李 强等. 电激励连续波 HF/DF 选线化学激光器光轴的确定[J]. 强激光与粒子束, 2006, 18(8):1257~1260
- 11 Wang Hongyan, Yuan Shengfu, Zhang Peng et al.. Choice of cavity's parameters for a discharge driven infrared multi-band chemical laser [J]. Chinese J. Lasers, 2005, 32(8):1040~ 1044

王红岩,袁圣付,张 鹏等. 电激励红外多波段化学激光器的 光腔参量选择[J]. 中国激光, 2005, **32**(8):1040~1044

- 12 R. S. Ram, Z. Morbi, B. Guo et al.. Infrared spectra of hot HF and DF [J]. The Astrophysical Journal Supplement Series, 1996, 103(3):247~254
- 13 W. W. Rigrod. Saturation effects in high gain lasers [J]. J. Appl. Phys., 1965, 36(8):2487~2490